Detecting Compositionality of Verb-Object Combinations using Selectional Preferences
نویسندگان
چکیده
In this paper we explore the use of selectional preferences for detecting noncompositional verb-object combinations. To characterise the arguments in a given grammatical relationship we experiment with three models of selectional preference. Two use WordNet and one uses the entries from a distributional thesaurus as classes for representation. In previous work on selectional preference acquisition, the classes used for representation are selected according to the coverage of argument tokens rather than being selected according to the coverage of argument types. In our distributional thesaurus models and one of the methods using WordNet we select classes for representing the preferences by virtue of the number of argument types that they cover, and then only tokens under these classes which are representative of the argument head data are used to estimate the probability distribution for the selectional preference model. We demonstrate a highly significant correlation between measures which use these ‘typebased’ selectional preferences and compositionality judgements from a data set used in previous research. The type-based models perform better than the models which use tokens for selecting the classes. Furthermore, the models which use the automatically acquired thesaurus entries produced the best results. The correlation for the thesaurus models is stronger than any of the individual features used in previous research on the same dataset.
منابع مشابه
GermaNet Synsets as Selectional Preferences in Semantic Verb Clustering
WordNet and its German version GermaNet have widely been used as source for fine-grained selectional preference information, focusing on but not restricted to verb-object relationships (Resnik, 1997; Ribas, 1995; Li and Abe, 1998; Abney and Light, 1999; Wagner, 2000; McCarthy, 2001; Clark and Weir, 2002). In contrast, this paper presents an approach where argument slots of variable verb-frame c...
متن کاملDisambiguating Noun and Verb Senses Using Automatically Acquired Selectional Preferences
Our system for the SENSEVAL-2 all words task uses automatically acquired selectional preferences to sense tag subject and object head nouns, along with the associated verbal predicates. The selectional preferences comprise probability distributions over WordN et nouns, and these distributions are conditioned on WordNet verb classes. The conditional distributions are used directly to disambiguat...
متن کاملA Cognitive Model for the Representation and Acquisition of Verb Selectional Preferences
We present a cognitive model of inducing verb selectional preferences from individual verb usages. The selectional preferences for each verb argument are represented as a probability distribution over the set of semantic properties that the argument can possess—a semantic profile. The semantic profiles yield verb-specific conceptualizations of the arguments associated with a syntactic position....
متن کاملLearning class-to-class selectional preferences
Selectional preference learning methods have usually focused on wordto-class relations, e.g., a verb selects as its subject a given nominal class. This papers extends previous statistical models to class-to-class preferences, and presents a model that learns selectional preferences for classes of verbs. The motivation is twofold: different senses of a verb may have different preferences, and so...
متن کاملIntegrating selectional preferences in WordNet
Selectional preference learning methods have usually focused on word-to-class relations, e.g., a verb selects as its subject a given nominal class. This paper extends previous statistical models to class-to-class preferences, and presents a model that learns selectional preferences for classes of verbs, together with an algorithm to integrate the learned preferences in WordNet. The theoretical ...
متن کامل